Author: Natalie Waller

Кеу							
Probability (P)	UC- Uncertain	P- Possible	L- Likely	Almost Certain- A.C			
Consequences (C)	UK- Unknown	L- Low	Mod- Moderate	M- Major			
Risk rating (R)	L- Low	Mod- Moderate	H- High	Cr-Critical			

Climate Hazard	Birds	Amphibians	Mammals	Reptiles	Invertebrates	Feral animals
Increased	Vulnerable species	Benefit some	Vulnerable species	Late-burns benefit	Limited influence as	Possibly facilitate
incidence of	include smaller	arboreal frogs (3)	include small to	some species that	most invertebrate	predation and prey
destructive wild	frugivores and	PCR- PUCL	medium sized	prefer sparse	groups highly	switching by
fires	granivores (eg:		marsupials and	ground cover,	resilient to fire (2, 3)	dingoes/wild dogs to
	Gouldian finch) that		rodents that have	such as the frill-	PCR- <mark>L</mark> UC <mark>Mod</mark>	target mammal
	have either very		small home ranges	necked lizard	.	communities (20) and
	small home ranges		or favour unburnt	(4,30, 24)	Ground-active	potentially livestock.
	or follow seasonal		habitat eg:,		groups are sensitive	
	fluctuations in food		common brushtail	PCR- ACUCMod	to late fires (3)	PCR- <mark>ACMCr</mark>
	resources and		possum, black-	Late burns cause	PCR- ACModH	
	species that are		footed tree rat (39,	decrease in litter		
	restricted to small		3, 17, 37, 35)	utilising species	PCR- ACModH	PCR- ACMCr
	long-unburnt patches			(3, 30)		
	(39, 31)		PCR- ACMCr	(3, 30)	Grass-layer groups	Pig damage to
			Species that may	PCR- ACModH	influenced by fire	wetlands likely
	PCR-LModH		benefit from more		occurrence (3)	increases as pigs see
	Local scale changes		frequent fires	Declines under		refuge. Control easier
	in bird species		include northern	late fires in some	PCR- LModH	post-wild fire (23)
	diversity and		quoll, pale-field rat	species eg:	Ant diversity and	
	abundance (31)		(35)	spotted tree	abundance promoted	PCR- L <mark>MCr</mark>
				monitor) (3)	by fire, with the	

	PCR-LModH Beneficial short-term for some species that fire facilitates feeding eg: some granivorous and ground-feeding omnivores and carnivores, however this may be dependent on severity of burn (34) PCR-LLM		PCR- PUCL Possible increase in predation by dingos (20) and cats. PCR- LMCr	PCR-LMC	exception of the green tree ant (3) PCR- LUCMod Ant species that will benefit include hot climate specialists (1) PCR- LLMod May threaten some butterfly species (19) PCR- LPMod	Possible reduction in cane toad numbers in burnt areas (23) PCR - PUCL
Increased intensity of high rainfall events (flood and cyclones)	Ground nesting bird species may be impacted eg: magpie geese can only nest in floodplains inundated to a depth of 30-90cm (36) PCR-ACModH Reduction in seed resources for some species (36) PCR-LModH Southward distribution change of some species eg: Black-necked storks	Heavier rains may help maintain smaller streams and waterholes that may enhance frog recruitment (16) PCR-PUCL	Loss of shelter and food resources for some rodent species (36) PCR- LModH Potential reduction in Northern Bettong habitat if rainfall increases (14) PCR-LMaCr Loss of fruit and flower species may impact on flying fox communities (36)	Ground dwelling species reduction in diversity and abundance along flood plains (27) PCR- LModH	Beneficial to some generalist ant species that will recolonise flooded areas (38) PCR- LUCM	During and after rainfall events, cane toads will be able to disperse into more areas (6, 23) PCR-ACModH A flush of food resources will facilitate pig population growth (10) PCR-ACModH Mortality of some pigs (10) PCR-LUCM

	moving to south Australia (14) PCR-LLM		PCR- LModH Some species eg: agile wallabies may cease breeding and/or lose pouched young if flooding occurs early in the wet season (5) PCR- PLM			Pig damage exacerbated in non- riparian areas as they move away from watercourses. Evidence of damage already to vine thickets (23) PCR-ACModH
Increased storm surge and rising sea levels	Reduced availability of waterbird habitat which will force birds to over utilise remaining habitat, resulting in declines in some species(13) PCR- LModH	Inundation of freshwater habitat close to the coast may have some localised impacts PCR- LModH	Likely no impact as no truly coastal mammal communities in Northern Gulf PCR- UCUCL	Loss of nest sites for some marine turtle species (25) PCR-ACModH	Potential impact on mangrove mud- nesting ant species (21, 11) PCR-PUCL	Higher mortality of cane toad eggs due to inundation of freshwater breeding sites, however, a likely ecological advantage in comparison to native amphibians due to some salinity tolerance (28, 23) PCR-PUCL Pig impact on turtles nests could be greater, as more nest sites are damaged by inundation (23 PCR-LMaCr Carrion may be washed up in coastal

					areas which may attract more pigs (23) PCR-PUCL
Longer dry seasons	Bird species that utilise wetlands may decline in numbers due to a decrease in water availability (13) PCR-ACModH	Negative impacts on frog reproduction (16) PCR- LModH	A decline in foliar water will impact folivorous species (33) PCR- PLM	Reduced breeding success of some butterfly species (26) PCR- LModH	Prey switching during drought period – eg cats known to switch from rabbits to invertebrates, birds, reptiles and mammals during drought (7) PCR- LModH Cats will put increasing pressure on prey populations and will consume sick and dying animals, possibly moving over to consuming carrion (18, 22)
					PCR- ACMCr Reduced survival and recruitment of feral pigs (12) PCR- LUCM Movement of pigs into wetlands will increase damage (10, 23) PCR- LUCM

Continued warming of temperature, including more hot days	Changes in arrival and departure of some migratory bird species (14, 9) PCR-ACModH Southward movement of nesting grounds of some shorebird species (14) PCR-LLM Increase in some marine bird species due to increases in food resources in association with warmer sea temperatures (14) PCR - LUCM	Substrate dependent species may fail to adapt as unable to migrate south (15) PCR- LModH Earlier spawning in amphibians (32) PCR- LLM	A shift in altitudinal maximums for many species (14) PCR- LModH Contraction of some species distribution south eg: some flying fox species (14, 29) PCR-ACLM Greater numbers of flying foxes roosting at southern roost sites (29) PCR-ACLM	May highly influence sex determination in species that temperature determines sex of hatchlings (32) PCR- ACMCr	Bioclimates for butterflies are predicted to decrease with temperature increases of between 0.8-1.4 degrees by 2050 (14) PCR- LUCM Earlier appearance of migratory butterflies (32) PCR- LUCM Range shift of some butterfly species (32) PCR- LUCM	reproduction and distribution of cane toads into refugial areas (33, 39) PCR- LModH Reduced reproduction in wild dogs / Dingo (8) PCR- LModH Movement of pigs into refugial areas that provide shelter from extreme temperatures (10) PCR-ACModH Increased activity of toads and greater resilience than native frogs (23) PCR- LModH
---	---	---	--	--	---	---

Earlier breeding of			
some species (9)			
PCR - LUCM			

Climate Change Risk Assessment References

- 1. Andersen, AN 1991, 'Responses of ground-foraging ant communities to three experimental fire regimes in a savanna forest of topical Australia', *Biotropica*, vol. 23, no. 4b, pp. 575-85.
- 2. Andersen, AN & Müller, M 2000, 'Arthropod responses to experimental fire regimes in an Australian tropical savannah: ordinal-level analysis', *Australian Journal of Ecology*, vol. 25, pp. 199-209.
- Andersen, AN, Cook, GD, Corbett, LK, Douglas, MM, Eager, RW, Russell-Smith, J, Setterfield, SA, Williams, RJ & Woinarski, JCZ 2005, 'Fire frequency and biodiversity conservation in Australian tropical savannas: implications from the Kapalga fire experiment', *Austral Ecology*, vol. 30, no. 2, pp. 155-67.
- 4. Andersen, AN, Woinarski, JCZ & Parr, CL 2012, 'Savanna burning for biodiversity: Fire management for faunal conservation in Australian tropical savannas', *Austral Ecology*, vol. 37, no. 6, Sp. Iss. SI, pp. 658-667.
- 5. Bolton, BL, Newsome, AE & Merchant, JC 1982, 'Reproduction in the agile wallaby Macropus agilis (Gould) in the tropical lowlands of the Northern Territory: opportunism in a seasonal environment', *Australian Journal of Ecology*, vol. 7, pp. 261-77.
- 6. Brown, GP, Kelehear, C & Shine, R 2011, 'Effects of seasonal aridity on the ecology and behaviour of invasive cane toads in the Australian wet-dry tropics', *Functional Ecology*, vol. 25, pp. 1339-47.
- 7. Catling, PC 1988, 'Similarities and contrasts in the diets of foxes, *Vulpes vulpes*, and cats, *Felis catus*, relative to fluctuating prey populations and drought', *Wildlife Research*, vol. 15, no. 3, pp. 307-17.
- 8. Catling, PC, Corbett, LK & Newsome, AE 1992, 'Reproduction in captive and wild dingoes (Canis familiaris dingo) in temperate and arid environments of Australia', *Wildlife Research*, vol. 19, no. 2, pp. 195-209.
- 9. Chambers, LE & Keatley, MR 2010, 'Australian bird phenology: a search for climate signals', Austral Ecology, vol. 35, pp. 969-79.
- 10. Choquenot, D, McIlroy, J & Korn, T 1996, *Managing Vertebrate Pests: Feral Pigs*, Bureau of Resource Sciences, Australian Government Publishing Service, Canberra.
- 11. Clay, RE & Andersen, AN 1996, 'Ant fauna of a mangrove community in the Australian seasonal tropics, with particular reference to zonation', *Australian Journal of Zoology*, vol. 44, pp. 521-33.
- 12. Giles, JR 1980, 'The ecology of the feral pig in western New South Wales', The University of Sydney.
- 13. Hansen, BD, Menkhorst, P, Moloney, P & Loyn, RH 2015, 'Long-term declines in multiple waterbird species in a tidal embayment, southeast Australia', *Austral Ecology.*
- 14. Hughes, L 2003, 'Climate change and Australia: trends, projections and impacts', Austral Ecology, vol. 28, pp. 423-43.
- 15. Keith McDonald, personal communication, 27th November 2015.

- 16. Laurance, WF 1996, 'Catastrophic declines of Australian rainforest frogs: is unusual weather responsible?', *Biological Conservation*, vol. 77, pp. 203-12.
- 17. Legge, S, Murphy, S, Heathcote, J, Flaxman, E, Augusteyn, J & Crossman, M 2008, 'The short-term effects of an extensive and highintensity fire on vertebrates in the tropical savannas of the Central Kimberley, northern Australia', *Wildlife Research*, vol. 35, pp. 33-43.
- 18. Molsher, R, Newsome, AE & Dickman, C 1999, 'Feeding ecology and population dynamics of the feral cat (*Felis catus*) in relation to the availability of prey in central-eastern New South Wales', *Wildlife Research*, vol. 26, pp. 593-607.
- 19. New, TR 1990, 'Conservation of butterflies in Australia', Journal of Research on the Lepidoptera, vol. 29, no. 4, pp. 237-53.
- 20. Newsome, AE & Catling, PC 1983, 'The feeding ecology of the dingo II. Dietary and numerical relationships with fluctuating prey populations in south-eastern Australia', *Australian Journal of Ecology*, vol. 8, pp. 345-66.
- 21. Nielsen, MG 1997, 'Nesting biology of the mangrove mud-nesting ant *Polyrhachis sokolova* Forel (Hymenoptera, Formicidae) in northern Australia', *Insectes Sociaux*, vol. 44, no. 1, pp. 15-21.
- 22. Paltridge, R, BGibson, D & Edwards, G 1997, 'Diet of the feral cat (*Felis catus*) in central Australia', *Wildlife Research*, vol. 24, no. 1, pp. 67-76.
- 23. Panel workshop Sarah Rizvi, Mike Anthony & Natalie Waller.
- 24. Pianka, ER & H Goodyear, SE 2012, 'Lizard responses to wildfire in arid interior Australia: Long-term experimental data and commonalities with other studies', *Austral Ecology*, vol. 37, pp. 1-11.
- 25. Pike, DA & Stiner, JC 2007, 'Sea turtle species vary in their susceptibility to tropical cyclones', Oecologia, vol. 153, pp. 471-8.
- 26. Pollard, E, Greatorex-Davies, JN & Thomas, JA 2003, 'Drought reduces breeding success of the buterfly *Aglais urticae*', *Ecological Entomology*, vol. 22, no. 3, pp. 315-8.
- 27. Preece, N & Franklin, D 2013, *Biodiversity survey Gilbert River 2009 flooded area on Delta Downs Station June 2013*, Biome 5 Pty Ltd, Atherton.
- 28. Rios-López, N 2008, 'Effects of increased salinity on tadpoles of two anurans from a Carribbean coastal wetland in relation to their natural abundance', *Amphibia-Reptilia*, vol. 29, no. 1, pp. 7-18.
- 29. Roberts, BJ, Catterall, CP, Eby, P & Kanowski, J 2012, 'Latitudinal range shifts in Australian flying-foxes: A re-evaluation', *Austral Ecology*, vol. 37, pp. 12-22.
- 30. Trainor, CR & Woinarski, JCZ 1994, 'Responses of lizards to three experimental fires in the savanna forests of Kakadu National Park', *Wildlife Research*, vol. 21, no. 2, pp. 131-47.
- 31. Valentine, LE, Schwarzkopf, L & Johnson, CN 2012, 'Effects of a short fire-return interval on resources and assemblage structure of birds in a tropical savanna', *Austral Ecology*, vol. 37, pp. 23-34.
- 32. Walther, G, Post, E, Convey, P, Menzel, A, Parmesan, C, Beebee, TJC, Fromentin, J, Hoegh-Gulberg, O & Bairlein, F 2002, 'Ecological responses to recent climate change', *Nature*, vol. 416, pp. 389-95.
- 33. Winter, J 2007, *Eucalypt woodland in Cape York Peninsula as habitat for arboreal marsupials: Rresponses of the common brushtail possum*, Tree Kangaroo and Mammal Group, Atherton.
- 34. Woinarski, JCZ 1990, 'Effects of fire on the bird communities of tropical woodlands and open forests in northern Australia', *Australian Journal of Ecology*, vol. 15, no. 1, pp. 1-22.
- 7. Northern Gulf NRM Plan (2016-2021)- Climate change risk assessment- FAUNA

- 35. Woinarski, J, Risler, J & Kean, L 2004, 'Response of vegetation and vertebrate fauna to 23 years of fire exclusion in a tropical *Eucalyptus* open forest, Northern Territory, Australia', *Austral Ecology*, vol. 29, pp. 156-76.
- 36. Woinarski, JCZ, Brendan, M, Nix, H & Traill, B 2007, *The nature of northern Australia: Natural values, ecological processes and future prospects*, ANU E Press, Canberra.
- 37. Woinarski, JCZ, Armstrong, M, Brennan, K, Fisher, A, Griffiths, AD, Hill, B, Milne, DJ, Palmer, C, Ward, S, Watson, M, Winderlich, S & Young, S 2010, 'Monitoring indicates rapid and severe decline of native small mammals in Kakadu National Park, northern Australia', *Wildlife Research*, vol. 37, no. 2, pp. 116-126.
- 38. Woodroff, S & Majer, JD 1981, 'Colonisation of ants on the exposed banks of the canning dam reservoir', *Australian Entomology Magazine*, vol. 8, no. 4, pp. 41-6.
- 39. Yates, CP, Edwards, AC & Russell-Smith, J 2008, 'Big fires and their ecological impacts in Australian savannas: size and frequency matters', *International Journal of Wildland Fire*, vol. 17, pp. 768-781